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Abstract The artificial compressibility method is used to analyze internal flows in rotating ducts
having strong curvature. This study was concerned with the laminar flow of an incompressible
Newtonian fluid having constant viscosity i circular and squarve ducts with a 90° bend. The
emphasis of the present simulation is to determine the effect of votation and through-flow rate on
the fluid physics and friction characteristics in the straight channel and in the curved geometric
regions. The Reynolds numbers ranged from 100 to 790 and the Rossby numbers from O to 0.4.
Coriolis forces arising from rotation produce a non-symmetric secondary flow in the bend that
wncreases the loss coefficient as compared with the values for non-rotation. In addition, the wall
Sriction losses in the straight outlet section are increased, and both effects are directly proportional
to the Rossby number.

Nomenclature o

D = reference length w = average velocity over the cross
D = transient vector section

Ec,Fc,Ge = convective vectors U, V, W = contravariant velocities

Evy, Fy, Gy = viscous vectors

J = Jacobian Greek symbols

p = pressure &n,¢ = generalized coordinate axes
Re = Reynolds number &,m,G = metrics of the transformation
Ro = Rossby number I = dynamic viscosity

X, Y, Z = Cartesian coordinate axes ) = density

u, v, w = Cartesian velocity components i = shear stress

t = time = rate of rotation
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Introduction

Flows in rotating ducts occur in numerous and diverse industrial processes.
These include flows in cooling passages of turbine blades, flows in lubrication
systems in car engines and flows in centrifugal compressors. Such flow cases
have strong secondary flows due to the presence of Coriolis forces.

The effects of rotation on the hydrodynamics of internal flows have
considerable practical implications in the design of turbine-blade cooling
passages. The cooling arrangements in modern gas turbine blades commonly
entail the circulation of “cool” air through roughly square, serpentine, cooling
passages in the blade interior. The very tight bend that terminates each
straight section of the passage causes secondary flow, and the flow is further
complicated by the blade rotation which induces a significant Coriolis force on
the flow.

The development of secondary flows in the pressure-driven flow of a fluid
through a duct that is rotating has been studied in the past. The earliest work
on this subject consisted of theoretical investigations of the weak-rotation
(Rossby number close to zero) case for laminar flow in circular straight pipes.
Barua (1955), by using a perturbation approach, showed that for weak rotations
the secondary flow consisted of a counter-rotating-double-vortex configuration
similar to that which occurs in a stationary curved pipe. Benton and Boyer
(1966), Mori and Nakayama (1968), and Ito and Nanbu (1971) have also
attempted theoretical analyses of fully-developed laminar flow by assuming
that the flow may be treated as a central core region together with a relatively
thin boundary layer region in the immediate vicinity of the wall.

Only a limited amount of experimental data is available for comparison with
theory. Measurements of the axial velocity in two-dimensional flows in rotating
ducts have been reported by Moore (1967) and by Johnston et al (1972).
Experimental results for axial velocity have also been reported for three-
dimensional flows (Moore, 1973; Hill and Moon, 1962). However, no
experimental measurements are available in the literature for secondary flows
in rotating ducts with strong curvature.

The present work is a computational study of laminar flow through a
rotating duct with parallel rotation at the inlet and orthogonal rotation at the
outlet. The purpose of this work is to study the flow in rotating ducts with 90°
bends. The flow in both square and circular ducts was studied for different
Reynolds and Rossby numbers.

The governing partial differential equations are solved using the finite-
difference procedure of Vaidyanathan (1998) adapted to a non-inertial frame of
reference. A third-order upwind scheme was used for the convective terms and
second-order central differences were used for the viscous terms.

Governing equations and the model problem

Figures 1(a) and 1(b) show, respectively, a square and circular duct having 90°
bends and which are rotating about the entry flow axis. In both cases the
straight flow sections before and after the bend were set to a length of five
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Figure 1.
Square and circular
ducts with a 90° bend

{a} Squisra diet with @ DD dagres bared ) Ciecaslar ot with g D) Segies bared

times the duct diameter. The radius of curvature of the inner wall in the curved
section is 1.8 times its diameter. The flow field considered is laminar and
steady, and the fluid is incompressible and Newtonian with constant viscosity.

The circular or square duct under rotation represents a non-inertial frame of
reference because the ducts are accelerating and therefore forces are acting on
them. The governing equations used in the flow modeling must be modified in
a way that will consider these new forces due to rotation, which comprise
centripetal and Coriolis forces. The governing equations, with respect to the x,
y, z coordinate system, are
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Here, u, v, and w are the velocity components in the x, y, and z directions,
respectively. The quantity P is the modified pressure and €2 is the magnitude of
the rotation vector about the x-direction.

The modified pressure is defined as

P=p+p® 5)

where p is the static pressure term and ® is the potential of the centripetal term.
Equations (1)-(4) are written in dimensionless terms using a reference length
and reference velocity. The reference velocity used was the average velocity
over a cross-section, W.
The reference length for the circular duct was the diameter and for the
square duct was the side length, both designated by D. The dimensionless
quantities obtained are

== u== P :T2
D W pW

Y70 "Tw "TD

z*—E W*:i Q*:Q:D
D W W

Using these dimensionless quantities, the dimensionless form of equations (1)-(4)
was obtained.

The dimensionless governing equations contain two parameters: the
Reynolds number (Re), which is the ratio of the inertial force to the viscous
force, and the Rossby number (Ro), which is the ratio of the Coriolis force to the
inertial force:

2QD

H W ©

The governing equations, as written, can only be used to solve problems in a
cartesian coordinate system.

These equations were transformed to a generalized system and are written
in the strong conservation law form as suggested by Viviand (1974) as

0 =~ = d o =
a_g(Ec_EV)"‘%(FC_FV)‘i‘

where the convective vectors are

9

8( (GC‘ - Gv) = S (7)
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U= + 6V +Ew
V =nau" + v +n,w 9)
W = Cxu* —+ CyV* + CZW*

The quantity ] is the Jacobian of the transformation defined as the determinant
of the Jacobian matrix:

(x*,y*,2")
J="r 7 (10)
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The viscous vectors are defined as
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and Txx, Tyv, Tzz, TXY, TXz, Tyz are
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The new terms due to the Coriolis forces are included in the governing equation
as a source term:

0
0

>
I

Row* (12)

—Rov*

| =

Numerical method

Equation (7) was solved using a finite difference numerical approach. The
primary difficulty in computing a solution to equation (7) is because the fluid is
incompressible, and it is therefore necessary to find a method to link changes in
the velocity field to changes in the pressure field. The method suggested by
Chorin (1967), known as the artificial compressibility method, was used to link
the continuity equation with the momentum equation. Using this formulation,
an artificial term, the time derivative of the pressure, is added to the continuity
equation. The unsteady terms are also added to the momentum equation to
allow the program to iterate on time until the steady state solution is obtained.
Equation (7) was modified in a way that allowed the use of the artificial
compressibility method, but it should be noticed that when the steady state
solution is obtained, equation (13) reduces to equation (7).

O oo O o D e D .
a(D)+a—§(Ec—EV)—Fa—n(FC—FV)—i—a—C(GC—GV)—S (13)
where
P/
D= ",
v
W*

and [ is an artificial compressibility constant.

Equation (13) contains three types of terms: first-order spatial derivative
terms; second-order derivative terms; and cross-derivative terms. The first-
order spatial derivative arising from the convective vector was represented
using a third-order upwind scheme, and the other derivatives were represented
using a central difference scheme.

Boundary conditions are needed at the inlet, exit and the wall. At the inlet, the
velocity distribution is specified as a fully developed flow. At the outlet, pressure
and velocity are extrapolated from internal nodes. At the walls, no slip and no
penetration are assumed. The pressure boundary condition used at the wall is the
boundary layer approximation in a rotating frame of reference, therefore the
modified pressure gradient normal to the wall is assumed to be zero. All
boundaries were coupled and subjected to implicit treatment. It has been shown



by Chen (1990) that an implicit boundary condition treatment permits the use of Flow in rotating
large time steps, allowing the algorithm to converge to the asymptotic steady ducts
state much faster than schemes that use explicit boundary conditions.

Results and discussion
Multiple simulations were performed in this work. Table I summarize the cases
solved with the code and the grid definition used for each case. Different grid 547
sizes were used in this study, and some significant aspects were noticed. The
coarsest grid used was 51 x 21 x 21 (nearly 23,000 grid points) nodes in the
streamwise, normal and radial directions, respectively. It was found that
solutions for low Reynolds numbers converged rapidly. Solutions for higher
Reynolds numbers required a finer mesh. This was accomplished using grids
with 71 x 31 x 31 (68,000 grid points) nodes and 101 x 41 x 41 (170,000 grid
points) nodes in the streamwise, normal and radial directions, respectively.
Figure 2 shows the velocity profiles obtained at different angular locations
along the bend for the square duct. These profiles are compared with the
numerical results of Yeo ef al (1991) and the experimental data of Humphrey et
al. (1977) along the center-line at z = 0. The Reynolds number was 790 and there
is no rotation. The grid definition used in this comparison was 71 x 31 x 31, and
good agreement was obtained among all three studies at the 0° and 90° planes,
with lesser agreement with the experimental data along the 30° and 60° planes.
Several solutions were obtained for the 90° bend with a square cross-section
for different grid resolutions, at the same Reynolds and Rossby numbers, and
results that are nearly independent of the grid resolution were obtained. The

Duct type Re Ro Grid definition
Square 100 0.0 51 x 21 x 21
Square 300 0.0 51 x 21 x 21
Square 500 0.4 51 x 21 x 21
0.2
0.0
Square 790 0.0 51 x 21 x 21
Square 100 0.4 71 x 31 x 31
0.2
0.0
Square 300 04 71 x 31 x 31
Square 500 0.4 71 x 31 x 31
Square 790 0.0 71 x 31 x 31
0.2
04
Square 100 0.0 101 x 41 x 41
Circular 100 0.0 71 x 31 x 31
0.2
04 Table 1.
Circular 790 0.0 71 x 31 x 31 Summary of the cases

0.4 solved in this work
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Richardson extrapolation analysis with grid doubling, as suggested by Roache Flow in rotating
(1998), was used for the coarse mesh (51 x 21 x 21). For this mesh, (51 x 21 x ducts
21), a maximum error estimate of 2.57 percent was obtained for the entire

parameter range covered in this work.

Strong curvature in a duct will generate secondary flow. Figure 3 shows
secondary flows at different angular locations along the duct. Figures 3(a) and
3(c) show the results for a square duct with a Reynolds number of 790 and a 549
Rossby number of 0.4 at 45° and 90°, respectively. These results are compared
with those at the same Reynolds number without rotation, Figures 3(b) and
3(d). The symmetrical secondary flow cells along the centerline in the non-
rotating case are due to the strong curvature of the bend. However, in the
rotating case there is a lack of cell symmetry due to the Coriolis force.

The flow characteristics differ for a rotating duct with a 90° bend when
compared to the non-rotating case. Figure 4 shows variations of the axial
velocity profile at the same Reynolds number (Re = 790), but different Rossby
numbers. The results are shown at three different angular locations along the
bend. No variations were found at 0°, which is due to the fact that at this location
the Coriolis force cannot induce secondary flow if the density is constant. The
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Figure 4.

Axial velocity profile at
various angular
streamwise locations in
a square duct with 90°
bend (Re = 790)
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flow close to the inner wall of the bend is higher when the Rossby number is
increased (higher rotation rate), as can be seen for the 45° and 90° locations.
Increasing Rossby number means that Coriolis force effects will increase, and
therefore the flow characteristics will differ from the non-rotating case.

Figure 5 shows the velocity and pressure profiles in a 90° bend with a
circular cross-section. The results illustrate differences for the rotating and



(a) Velocity vector plot at mid-plane of a (b) Velocity vector plot at mid-plane of a
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non-rotating cases. The axial flow along the bend is pushed towards the outer
wall for both cases (rotating and non-rotating), see Figures 5(a) and 5(b).
However, the axial flow at the outlet will be pushed towards the inner wall for
the rotating case. Figures 5(c) and 5(d) show the pressure contours for both
cases.

Figure 6 compares the axial velocity profiles at the 90° plane at different
Rossby numbers for the circular and square ducts with a Reynolds number of
790. The Coriolis forces push the flow towards the inner wall of the bend for
both the square and circular ducts. The strong curvature pushes the flow
towards the outer wall. Therefore, two regions with high flow are obtained at
the inner wall and the outer wall of the bend for Ro = 0.4 in a square or circular
duct, and the rotation mainly affects the flow near the inner wall.
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Figure 5.

Velocity and pressure
plot in a 90° bend with
circular cross-section at
different Rossby
numbers
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Figure 6.

Axial velocity profile at
90° plane along the
symmetry plane with
square and circular
cross-section (Re = 790)
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Secondary flow in a 90° bend with a circular cross-section is shown in Figure 7.
For the non-rotating case or zero Rossby number, it can be seen that there is
formation of two symmetrical vortex cells at the 45° plane and the formation of
four symmetrical vortex cells at the 90° plane. The secondary flow was not
symmetrical for the rotating cases. This behavior agrees with that obtained
previously for the square duct (Figure 3).

The friction losses in a rotating 90° bend are the result of the wall-friction
effects in the inlet and outlet straight sections and the losses due to the bend. In
this work is shown the rotation effect on the wall friction factor and the 90°
bend losses for the channel with square cross-section. Similar behavior is
expected for the 90° bend with circular cross-section under rotation.

Because of the difference in mode of rotation for the inlet and outlet straight
sections, the friction factors in these two sections are different. Figure 8 shows
the effects of the Rossby number and Reynolds number on axial variation of
(feRe), which is used to express the friction performance of the straight
channels. The values taken on each straight section are spanwise averages.
The straight dashed line on this figure represents the result for fully developed
laminar flow in a straight stationary channel, (feRe) = 14.2. As can be seen
from Figure 8, the friction factor at the straight inlet section is similar to the one
obtained for a square duct without rotation, and it increases only close to the
bend. This result was expected because the inlet section is in parallel rotation
mode and the fluid density is assumed constant; therefore the Coriolis force will
not affect the flow.



(a) Secondary flow at 45 degree plane (b) Secondary flow at 45 degree plane
(Re =790, Ro =0.4) (Re =790, Ro=0)

(c) Secondary flow at 90 degree plane (d) Secondary flow at 90 degree plane
(Re =790, Ro=0.4) (Re =790, Ro =0)

Figure 9 shows the wall friction factor for the outlet straight section in a 90°
bend with a square cross-section. The results are shown at different Reynolds
and Rossby numbers. The values obtained in this section are higher than those
obtained for the inlet straight section. The friction factor is higher in this
section because of the secondary flows due to the strong curvature of the bend
and the Coriolis force.

The pressure drop due to the bend is specified by the loss coefficient, K,
which is defined as Kt = (Pent — Pex)/2, where Po, and P, are the
dimensionless stagnation pressures at the entrance and exit planes of the 90°
bend, respectively. Figure 10 gives the Rossby number dependence of the loss
coefficient of the bend for two Reynolds numbers, 790 and 500. The loss
coefficient decreases with increasing Reynolds numbers for both stationary
and rotating conditions. However, the loss coefficient increased with increasing
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Figure 7.

Secondary flow vector
plot in a 90° bend with
circular cross-section at
different Rossby
numbers
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Friction factor at the
outlet section for a 90°
bend with square
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Rossby number because the secondary flow due to the bend curvature is
enhanced with rotation. Hwang and Lai (1998) reported that the loss coefficient
decreased with increasing Rossby number for the flow in a 180° sharp turn. It
should be noted that these authors neglected the centripetal term in the
transverse direction. These terms have been shown to be important in both
directions in the vicinity of the bend.

Conclusions

An analysis has been presented for studying three-dimensional laminar
viscous flows in rotating ducts with strong curvature. The governing equations
were successfully solved using the artificial compressibility method. The
results obtained allow us better to understand the flow characteristics
occurring inside rotating ducts.

Solutions have been presented at different Reynolds and Rossby numbers in
circular or square ducts. The present work considers the flow to be laminar.
Important variations were found in these results when the Rossby number was
increased. Coriolis forces can significantly alter secondary flow due to strong
curvatures. The numerical study reassures us that rotation enhances secondary
flow and will affect the axial flow.

In this work it was found that friction factors increase dramatically in the
outlet straight section after the 90° bend if the duct is rotating. Also, the
pressure drop in a 90° bend will increase with rotation. These two factors
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Figure 10.

Rossby number
dependence of loss
coefficient in the 90°
bend with square
cross-section
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should be taken into account in the design of cooling systems in blades. Further
investigations are needed to better understand flow characteristics under
rotation in complex geometries.
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